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ABSTRACT 
The integration of experimental data and computational databases is key to supporting decisions during the 
development of missile systems.  An innovative technique is demonstrated to increase the accuracy of 
databases used for comprehensive flight simulations of missiles.  This technique uses multidimensional 
response surface technology to mutually enhance heterogeneous data sets.  An important application of this 
technology is the use of sparse data points from limited wind tunnel tests to correct/calibrate computational 
databases used in flight simulations. 

1.0 LIST OF SYMBOLS AND ABBREVIATIONS 

b  RBF scale parameter 
ck  basis function coefficients, elements of [ ]C  

[ ]C  solution vector ( [ ]Tpc,,c,c …21 ) 

[ ]Ĉ  regression estimate for [ ]C  
C  load coefficient (generic) 

nl,C  nose rolling moment coefficient 
CFD computational fluid dynamics 
cov  covariance 
[ ]e  regression error 
[ ].E  expected value 

f  shape function 
F  global interpolant (output of RBF network) 
F̂  regression estimate for F  
[ ]I  identity matrix 
M  Mach number 
N  dimension (number of independent variables) 
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p  number of support vectors 
[ ]1,2Q  orthogonal matrices 
RBF radial basis function 
RMS root mean square 
RS response surface 
SVD singular value decomposition 
SVM support vector machine 
var  variance 

ix  i-th independent variable (i-th coordinate of X  vector) 
X  independent variables vector 
Y  dependent variable 

cα  total incidence angle 

ijδ  Kroenecker delta tensor 

kδY  seed uncertainty of dependent variable at point k 
ε  auxiliary variable 
φ  roll angle 

kφ  k-th radial basis function 

kχ  radial basis function center for kφ  
2σ  regression error variance 

[ ]Σ  diagonal matrix of singular values 
[ ]+Σ  truncated inverse of [ ]Σ  

2.0 MOTIVATION 

It is well-known that pointwise, or even line plot, comparisons between various data sets can be deceiving.  
This is particularly true in regions where large gradients exist.  The goal of the present paper is to present a 
data processing technique that helps the engineer develop a global understanding of the data, specifically 
limited experimental test data, with the aid of physics-based computational information.  A data fusion 
technique is used to produce a response surface acting as a global interpolant of the data, both computational 
and experimental.  The advantage of this technique, as opposed to conventional interpolation or data fitting 
techniques, is that the interpolation of the experimental data can be regarded as essentially computational 
(model) based.  In other words, the physics of numerical simulations can be used to interpolate (and, possibly, 
extrapolate) the experimental data where the sampling is sparse or even absent, while still respecting the 
integrity of the experimental data.  Vice versa, the resulting metamodel representation can also be regarded as 
a calibration of the computational model based on experimental data.   
 
Global metamodels and response surface technology have been used in a variety of fields, including structural 
reliability, instrument calibration, and aerodynamic and trajectory optimization, to name a few [1-10].  These 
models are a critical part of surrogate-based analysis and optimization [11,12].  A lesser known application, 
however, is a rational process for fusing data from disparate sources.  Designers are frequently confronted 
with the problem of effectively integrating data from multiple sources (theoretical, numerical, 
experimental) [13], while appropriately weighing uncertainty, past experience, and prior knowledge.  
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A systematic framework for aiding the designer and analyst in achieving this variable fidelity, multisource, 
multidimensional integration has been developed.  This framework uses robust multidimensional data 
generalization techniques which have their roots in machine learning methods such as neural 
networks [14,15], support vector machines [16], and other kernel methods [17].  The particular approach used 
in this paper is based on self-training radial basis function networks which form the basis of the NEAR-RS 
(response surface) technology. 
 
NEAR-RS is a software system consisting of two modules: a metamodel (response surface) identification 
module, and a metamodel evaluation/interrogation module.  A graphical user interface included in this second 
module serves as a multidimensional viewer facilitating the visualization of trends in high-dimensional 
data [18].  A key aspect of the technology is the ability to estimate further sampling needs and model quality, 
based on automatic uncertainty estimation.  The application discussed in this paper illustrates the data 
adaptivity and data fusion capabilities of the method by considering the problem of assimilating missile data 
from a wind tunnel test into a comprehensive aerodynamic database for guidance and control.   

3.0 TECHNICAL BACKGROUND 

Response surface methods can be used to perform data fusion operations in order to enhance the usefulness of 
limited experimental data.  The problem is akin to interpolating and extrapolating the data outside of the range 
where these data were collected, a task which, without any regularizing assumptions, constitutes a 
fundamentally ill-posed problem [13].  Regularizing assumptions can come in various forms: physics based 
models, mathematical equations (such as splines), implicit smoothness assumptions, or other empiricisms.  
The method used here employs a particular form of regularization, in which a hypersurface going through the 
experimental data is “supported” by additional computational constraints.  We present, first, the basic theory 
behind the response surface identification and its uncertainty, and, second, examine how it can be applied to 
the problem of data fusion. 

3.1 Theory 
The task of formulating a response surface in N-dimensional space amounts to identifying a smooth mapping F :  
RN→R on the basis of p available data points.  If this response surface acts as an interpolant, then the function F 
must satisfy the constraints  

( ) p,=i,Y=F ii …1,X    (1) 

where each iX  represents a vector of independent variables (for example, spatial coordinates, flow conditions, 

and/or configuration parameters), and each iY  is a dependent variable (for example, pressure).  In the case where 
F represents, instead, a fit to the data, then the response surface is required to minimize the distance 

( ) ii YXF − , typically in the least squares sense. 
 
This goal can be achieved by a number of different means, for example Kriging [19,20], which is used in the 
popular DACE stochastic process model [21], multivariate adaptive splines [22], and Support Vector Machine 
(SVM) [16] algorithms.  The goal of this paper is not to compare these methods to each other, but to illustrate 
how this class of methods can be used to achieve the goal of fusing experimental and computational data.  
NEAR's approach uses a radial basis function (RBF) network to represent the function F.  In this approach, F  is 
expanded into basis functions kφ  which are radially symmetric about their control point, kχ .  By analogy with 
SVMs, we will refer to ( )( )kk χF;χ  as the support vectors for the response surface.  Thus, 



Innovative Fusion of Experiment and 
Analysis for Missile Design and Flight Simulation 

23 - 4 RTO-MP-AVT-135 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

( ) ( ) ( ) ( )b;χXf=Xφ,Xφc=XF kkk
k

k −∑      (2) 

where f  is a scalar shape function, b is an adjustable [23] scale or stiffness parameter, and .  designates 

the Euclidean norm.  The  kc  are the basis function coefficients.  They are parameters to be identified.  Note 
that, if the basis functions (i.e., their shape, centers, and number) are known, then the determination of the 
nonlinear response surface boils down to an identification problem which is linear-in-the-parameters.  In other 
words, the coefficients kc  are the solution of a least-squares linear problem 

[ ][ ] [ ]Y=CA       (3) 

where each row of Eq. (3) is an instantiation of the constraints expressed in Eq. (1).  Radial basis function 
models, such as Eqs. (1) and (2), can be viewed [24] as a three-layer feedforward neural network with linear 
output mapping.  This is shown schematically in Figure 1, where the number of nodes in the hidden layer is 
equal to the number of basis functions, the inputs ix  are the coordinates of X , and the weights of the output 

layer are the coefficients kc .  Also, the shape function ( f ) is the activation function of the hidden layer nodes, 
which can take a number of forms, for example, Gaussian, thin plate spline, multiquadric, or reciprocal 
multiquadric [25,26].   

 
Figure 1: Radial Basis Function Network. 

 
There are, a priori, a number of different ways of selecting the control points kχ .  One possible approach is the 
use of sequential approximation and optimization methods.  This can be quite expensive, and a more efficient 
approach to control point selection consists of using a fixed subset of the existing training data.  Algorithms such 
as generalized cross-validation (GCV) [27] can be used for this purpose, resulting in parsimonious networks with 
good generalization properties.  While the use of a small number of regressors kφ  is indeed desirable from the 
point of view of model robustness, we will confine the present discussion to simple networks where the training 
data are assumed deterministic and sparse.  Thus, in this particular implementation, the number of basis 
functions is equal to the number of training data points, and the centers (control points kξ ) of the RBFs coincide 
with the data points.  As a result of this simplification, there is no need for stepwise regression algorithms: the 
structure of the equivalent neural network (Figure 1) is automatically determined by the data.   
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Multidimensional response surface identification in NEAR-RS is a three-step process: (1) preconditioning/ 
classification, (2) formation of the [A] matrix in Eq. (3), and (3) solution method for [C].  The preconditioning 
step uses a classification algorithm to associate data points which have the same (or substantially similar) values 
of the independent variables.  This step is a mechanism for mitigating problems associated with overfitting dense 
point clusters.  At present, this operation is performed on the basis of a user-defined tolerance in the independent 
variables.  If no tolerance is prescribed, then strict equality is required in order for two points to be associated.  
The purpose of preconditioning is to improve the solution characteristics by improving the condition number of 
the [A] matrix.  The formation of the [A] matrix is relatively straightforward: it involves the calculation of 
distances between all training data points.  If the response surface uncertainty is desired, then an additional step 
(weighted least squares) is used.  This situation is described below.  Finally, the solution method uses robust 
pseudoinversion technology, the purpose of which is to take care of pathological situations, such as the handling 
of inconsistent data.  Such data can occur, for example, as a result of improper or incomplete parameterization, 
such as repeatability tests or the existence of data from various sources (different codes, different fidelity level, 
algorithms, etc.) at the same or substantially similar condition.  These data “inconsistencies” amount to an ill-
posed problem in terms of interpolation, a difficulty which is circumvented using regularization techniques. 
 
One important addition to these ideas is the concept of response surface uncertainty.  In the following, it is 
shown that, due to linearity-in-the-parameters, it is possible to make use of well-established statistical results to 
propagate the uncertainty of the support data onto an uncertainty of the response surface itself. 
 
Consider the original equation [ ][ ] [ ]Y=CA  as a regressor model for the data.  Rewrite Eq. (3) as 

[ ][ ] [ ] [ ]e+Y=CA        (4) 

where [ ]e  is the modeling error.  Let [ ] [ ][ ][ ]TQΣQ=A 21  designate the singular value decomposition of the 
matrix [A].  The pseudoinverse solution is then given by [28] 

[ ] [ ][ ][ ]( ) [ ]YQΣQ=C T
1

+
2

ˆ    

It can then be shown [29], under certain simplifying assumptions, that the covariance matrix of the solution 
vector is 

[ ] ( )( ) [ ]T
2

+T
QΣQEσ=CCCCECcov Σˆˆ

2
2





 −−≡         (5) 

where [].E  designates the expected value, and  2σ  is the variance, presumed uniform, of [ ]e .  Thus, Eq. (5) 
propagates the uncertainty in [ ]Y  onto the solution vector [C].  Alternatively, the matrix [ ]T+ΣQ 22 ΣQ  can be 
interpreted as a sensitivity matrix which redistributes the measurement noise onto the solution vector 
components.  This uncertainty, in turn, ties into the uncertainty on the response surface itself.  
Let ( ) ( )Xφc=XF k

k
k∑  where the kφ  are the members of a radial basis function set.  It then follows that 

( ) [ ]( ) ( ) ( )XφXφCcov=FFE ji
i j

ij∑∑



 −

2ˆ        (6) 

Equation (6) represents the variance ( )Fvar  of the response surface.  Assume a Gaussian probability 

distribution.  The resulting uncertainty on ( )XF , defined as ( )Fvar±=∆F 3  (“three-sigma” uncertainty), 
is shown in the hypothetical example of Figure 2.  The dependent variable uncertainty of the training data is 
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indicated in the form of vertical error bars.  The resulting uncertainty on the response surface is indicated in the 
form of upper and lower bounds, ∆FF ± , using thin dashed lines. 

 
Figure 2: Response Surface (solid line) Plus/Minus Uncertainty (dashed lines). 

 
Note that, in order to propagate uncertainty according to the method described above, the variable [ ]e  must be a 
stochastic variable such that 

[ ] [ ]Iσ=ecov 2      (7) 

where [ ]I  is the identity matrix.  In other words, [ ]e  must have zero cross-correlation, and must be of uniform 
variance 2σ  across all of its components.  While the zero cross-correlation assumption is typically not justified 
if there is a deterministic bias between the regressor model and the data, it is still possible in practice to use the 
above equations to propagate uncertainty, by assuming that [ ]e  represents a vector of random measurement 

errors [ ]TpδY,,δY,δY …21 .  When these seed uncertainty levels differ from support vector to support vector, 
such as in the example of Figure 2, then both left- and right-hand sides of Eq. (3) are multiplied by a weighting 
matrix [ ]W , where [ ]W  is defined in tensor notation as ( )iijij Yvarδ=W / .  This simple algorithm ensures 
that the variance of the transformed variables is uniform.  At present, the uncertainties are assumed to be 
uncorrelated between data points.  If this were not the case, then more sophisticated techniques, such as Markov 
estimators and/or instrumental variables [29] could be used. 
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3.2 Application to Data Fusion 
While there are many definitions of data fusion, consider the general notion (Li et al. [30]) of data fusion defined 
as “the combination of a group of inputs with the objective of producing a single output of greater quality and 
reliability.”  In the present paper, we assume the existence of two data streams, one computational, the other 
experimental.  Instead of using these data streams to validate each other directly, the point of view adopted here 
is to recognize and accept that there will always be differences between them, due to experimental limitations, as 
well as approximations in the physical models used.   Fusion of these multiple data streams is then used to 
enhance data understanding.   We will confine the analysis to the case of experimental and computational data.  
Specifically, we focus on the situation where the computational data are reasonably affordable to obtain, in 
contrast to the experimental data, which will be assumed to result from expensive wind-tunnel tests at a limited 
number of configurations and flow conditions.  Thus, not only are the experimental and computational data not 
sampled at the same conditions, but the typical situation is one where the experimental data are sparse, with 
respect to the computational data. 
 
The basic idea behind the use of response surface technology for the fusion of experimental and computational 
data is to take advantage of the radial symmetry of the basis functions to construct a metamodel that incorporates 
all the data.  This can be done by adding one auxiliary variable 1+Nxε ≡  to the multidimensional design 
space ( )N2 x,,x,x …1 .  This extra variable is binary in nature, and is used to tag whether the data are 
computational ( 0=ε ) or experimental ( 1=ε ).  A single global response surface is then calculated in  N+1  
dimensions.  By querying the response surface projected along 1=ε  one obtains a model representation which 
respects the integrity of the experimental data, while simultaneously “inheriting” the essential features of the 
computational model.  To understand how the method works, consider the sketch shown in Figure 3. 

Experimental Points

Computational Points

"X"

 
Figure 3: Schematic Illustrating the Layout of Computational and Experimental Support Vectors. 

 
The schematic lays out the position of the experimental and computational support vectors relative to each other.  
The horizontal coordinate “X” symbolizes the independent variables ( )N2 x,,x,x …1 .  The vertical coordinate 
represents the auxiliary variable ε .  The circles around each point symbolize a “region of influence” or spatial 
correlation associated with each radial basis function.  The radius of these circles is related to the scale 
parameter  b  in Eq. (2).  Thus, wherever the data sampling is high, the interpolant will be mostly influenced by 
the basis functions whose centers are in the immediate vicinity.  On the other hand, when the experimental data 
points are widely separated relative to the width of the basis functions, the interpolation will be affected 
primarily by the computational points.  The evaluation of the response surface in the experimental plane has the 
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effect of interpolating the experimental data in a way that is rooted not in mathematics or simple-minded 
smoothness assumptions, but, rather, in whatever physics are included in the computational model.   

4.0 RESULTS 

Two missile aerodynamics applications of the method are presented.  The first is one-dimensional, with the 
benefit of abundant experimental data, thus allowing the illustration of the method using different data 
samplings.  The second application is multidimensional, and concerns the enhancement of a MISL3 
aerodynamic database using limited experimental data. 

4.1 A One-Dimensional Example 
For purposes of illustration, we now consider the experimental data from a series of wind tunnel tests carried out 
by Shorts Missile Systems Ltd. in the 1990s (Ref. [31]) for a free rolling missile body with a decoupled canard-
controlled nose section (see Figure 4). 

 
Figure 4: Details of Wind Tunnel Model (reproduced from Ref. [31], with permission). 

 
Figure 5 shows the static rolling moment nl,C  measured on the nose, as a function of the roll angle φ  at a 
freestream Mach number 3.5=M , total incidence angle deg=αc 8 , and canard fins canted at 8 and 12 
degrees (leading edge up) for the port and starboard fins, respectively.  The data shown in Figure 5 were taken 
at static conditions in order to compare them to CFD predictions.   
 
This configuration happens to present an interesting case where, at certain roll angles, the upper canard 
experiences partial shielding from the windward flow, due to the expansion over the nose, an effect which was 
correctly predicted by the CFD calculations of Ref. [31].  In this paper, we repeat these CFD calculations with 
a finer roll angle increment, in order to better capture the nonlinearities in the rolling moment variation.  For 
data fusion comparison purposes, a lower-fidelity method which does not incorporate all of the proper physics 
is also used.  The results of both methods are described next.  
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Figure 5: Variation of Nose Rolling Moment as a Function of Roll Angle, 3.5=M , deg=αc 8  

 (digitized from Ref. [31], Fig. 3, with permission). 
 
We begin with the use of the low-fidelity computational data, not with the intent of showing what happens 
when one attempts to fuse experimental data with computations of inadequate fidelity, but simply as a more 
visually interesting case, and as a teaching tool for how the data fusion method works.  Figure 6 illustrates the 
results of the data fusion process when augmenting the computation with sparsely sampled subsets of the 
experimental data.  Each plot in the figure portrays three entities: (1) the inputs, both computational (dashed 
line) and experimental (red dots), (2) the single fusion model output (solid line), and (3) the complete set of 
wind-tunnel measurements (“+” symbols).  It must be stressed that only the input data are used in the data 
fusion calculation.  The verification data are presented for comparison purposes only, i.e., as a reference 
against which to judge the quality of the prediction.  The inadequacy of the computational model taken by 
itself is evident.  The fusion of a single experimental data point ( deg=φ 0 ) with the computational data 
stream is shown in the upper left graph of Figure 6.  As expected, the fusion produces a slight shift in the 
prediction in order to accommodate the experimental support vector.  Let us assume that a second 
experimental data point is acquired at degφ 135−≈  (upper right graph).  The fused prediction at negative 
roll angles is now tilted upward.  The prediction maintains the overall character of the computation, but it has 
“learned” from the significant correction/improvement at degφ 135−≈ .   Suppose a third experimental data 
point is added (lower left graph, degφ 120−≈ ).  The prediction locally adapts to reflect the new 
information, eliminating much of the undershoot in the degφdeg 100135 −≤≤−  roll angle range.  In the 
lower right graph of Figure 6, the addition of a fourth experimental data point at degφ 80≈  results in an 
upward tilt of the prediction to, once again, accommodate the new information. 
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Figure 6: Data Fusion Predictions Using One (upper left), Two (upper right),  
Three (lower left), and Four (lower right) Experimental Data Points. 

 
As anticipated from the geometric interpretation of Figure 3, the response surface respects and adjusts to the 
experimental support vectors, while maintaining the overall character of the computational tool, whether in 
interpolation or extrapolation mode.  It is worth noting, however, that given a sufficient number of 
experimental data constraints, the influence of the computational data stream will eventually become 
insignificant.  This has been demonstrated on this particular example: by using experimental data every 
20 degrees (not shown), the RMS difference between the fusion result and the full data set was reduced from 
1.7×10-2 (with four points) to 6.6×10-4 (using 19 points).  Clearly, it is always possible to overcome the 
limitations of a poorly chosen computational model, given enough experimental data.  The main interest, 
however, concerns the case where the experimental data are sparse, because this will inevitably be the case 
when the number of independent variables is large.  What happens when one uses a computational model that 
contains the appropriate physics is shown next.   
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Instead of the lower fidelity computational model used in Figure 6, the data fusion experiments depicted 
above can be repeated using a computational methodology of the appropriate level (in this instance, an Euler 
CFD code, NEARZEUS, Ref. [32]).  Figure 7 depicts the data fusion prediction using the CFD data stream 
augmented with only two experimental points, deg=φ 0  and deg±=φ 180 .  
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Figure 7: Data Fusion Prediction Based on Euler CFD Prediction and Two Experimental Data Points. 

 
The comparison between the data fusion prediction and the complete experimental data set indicates a high 
degree of correlation.  In particular, details of the aerodynamic nonlinearities predicted by NEARZEUS are 
visible in the response surface.  With sparse experimental data, the response surface model has been tailored 
to learn from the computational data stream, while simultaneously adjusting to accommodate the 
experimental observations.  Note that this particular implementation assumes the experimental data to be 
correct, which is the rationale for evaluating the global response surface in the experimental “plane” ( 1=ε , 
see Section 3.2).   Figure 7 corresponds to the nominal prediction F  in Eq. (2).  It is worth mentioning that 
the variance on the prediction (not shown) is also automatically computed by NEAR-RS, a topic that will be 
addressed in a separate paper in the future. 
 
As a final note of caution, the importance of performing the data fusion operations with the correct analysis is 
stressed in Figure 8, which compares the data fusion predictions obtained by using the same two experimental 
data constraints as in Figure 7, namely deg=φ 0  and deg±=φ 180 , but with different computational 
analyses. 
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Figure 8: Comparison of Data Fusion Predictions Based on Two Computational Data Sets. 

 
The results shown in Figure 8 emphasize the importance of using computational models which incorporate the 
correct physics.  This is especially true when performing sparse data interpolation, since the reliance on the 
computation becomes greater.  While the example of taking only two experimental data points may appear 
extreme and somewhat academic, it is in reality highly relevant to the case of multidimensional data.  When 
data are characterized by a large number of independent variables, finite resources (time and budget) impose 
limitations on the number of conditions that can be acquired.  Modern design-of-experiment techniques can be 
used to maximize the amount of information that can be harvested from a given number of tests.  But when 
the number of dimensions is large, “filling-in” the space in all variables remains a physical impossibility.  Out 
of necessity, the data sampling will be sparse in at least some directions or regions of the parameter space.  
Having illustrated the basic characteristics of the present data fusion method in one dimension, we now turn to 
another missile aerodynamics application, this time involving three independent variables and very limited 
quantities of experimental data. 

4.2 Correction of MISL3 Database Using Experimental Data 
The goal of this program was to assimilate limited wind-tunnel data, with the goal of increasing the accuracy 
of comprehensive flight simulations of a missile.  The data shown here correspond to a generic body-tail 
configuration (not shown).  This application merges two data sets: an experimental (wind tunnel) data set, and 
a computational data set.  These data are used as the support vectors of a global response surface.  The 
“computational” support vectors are supplied by the MISL3 code [33].  This MISL3 database consists of 



Innovative Fusion of Experiment and 
Analysis for Missile Design and Flight Simulation 

RTO-MP-AVT-135 23 - 13 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

forces and moments predictions for a wide range of angles of attack, roll angles, and Mach numbers in the 
subsonic, transonic, and supersonic range.  The experimental support vectors were supplied by a wind tunnel 
test for a much smaller range of conditions consisting of three Mach numbers, four roll angles, and a subset of 
the angle-of-attack range.   
 
To produce an “error database,” to be used as an experimental correction to the MISL3 prediction, the 
difference between a fit to the MISL3 database and a fit to the experimental data was calculated.  For each 
force or moment coefficient (generically denoted C )  the fit was obtained by constructing a single low-order 
analytic (smoothly varying) four-dimensional response surface ( )εM,φ,,αRS cC  based on both MISL3 and 
experimental training data sets.  As described earlier, this is done by introducing the auxiliary variable ε  as a 
fourth independent variable.  This additional variable is used to separate the support vectors as distinct 
projections, or “planes,” of the parameter space, as illustrated in Figure 9. 

 
Figure 9: Schematic Illustrating Dimensionality Augmentation Prior to Data Fusion. 

 
For ease of representation, the Mach number direction is omitted from Figure 9.  The symbols indicate the 
locations in parameter space where wind tunnel and MISL3 data are available at a Mach number common to 
both data sets.  Note that, for many of the Mach numbers, data are available in one of the two planes only.  In 
addition, the angle of attack range of the experimental data was further limited at some Mach numbers.  
Therefore, the data do not lie on a regular matrix, a situation common to most high-dimensional data sets.  
Even in the rare cases (mainly low-dimensional) where a regular matrix of test points can be afforded, one is 
frequently confronted with the necessity of dealing with exceptions, i.e., “holes” in the data, or, as in the 
present case, unanticipated limitations in the range of some variables.  These conditions are precisely what 
makes conventional structured data interpolators fail, yet are eminently suitable for constructive 
approximation via radial basis functions.  
 
From a user perspective, this process is automatic and does not require the specification of any equations.  
Only support vectors from experimental and computational sources of data are needed.  In this particular case, 
the computational source of data is the MISL3 database.  Figures 10 and 11 depict, respectively, the rolling 
moment and side force coefficient predictions.  In order to compare in the same graph the data fusion 
predictions at 1=ε , the MISL3 database, and the experimental data, the Mach number of Figures 10 and 11 
corresponds to a case where data common to both the experiment and MISL3 were available.  Recall that the 
surface produced is not the result of two-dimensional interpolation, but a two-dimensional projection of a 
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four-dimensional response surface.  In terms of data interpolation/extrapolation, Figures 10 and 11 make it 
clear that the shape of the prediction surface with respect to angle of attack and roll angle is “inherited” 
primarily from the MISL3 database, which was the desired intent. 

 

 
Figure 10: MISL3 and Experimental Rolling Moment Predictions. 

 
Note, in addition, that this process can be used to create an “error database,” which is of interest to assess the 
effects of aerodynamic errors in flight simulations.  By arbitrarily taking the MISL3 prediction as the 
reference base, the error database, defined as  ( ) ( ) ( )01 =εM,φ,,αRS=εM,φ,,αRS=Mφ,,αδC cCcCc − , 

can be used to “correct” the MISL3 database ( δCC=C MISL3corrected + ) so as to take into account the 
experimental measurements.  With the exception of minor differences pertaining to the sampling of the 
MISL3 database for selecting the support vectors, correctedC  is equivalent to ( )1=εM,φ,,αRS cC .  In other 
words, the corrected database is the result of the data fusion response surface, evaluated in the experimental 
plane.  Similarly to the example shown earlier (Section 4.1), the data fusion prediction can be interpreted as a 
calibration of the MISL3 output, based on experimental data.  Conversely, this method is a way of 
constructing smart interpolation and extrapolation schemes in cases where only limited quantities of 
experimental data are available.   
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Figure 11: MISL3 and Experimental Side Force (rolled coordinate system) Predictions. 

 
NEAR has also used this method to improve pressure drag predictions for a different application, based on the 
fusion of high-resolution CFD calculations with limited pressure tap measurements in a wind-tunnel test.  The 
technique outlined above is quite general and can be used, either to “fill-in” where limited quantities of 
experimental data are available, or to “fine tune” the results of computational analyses using the limited data 
available.    

5.0 CONCLUSION 

An innovative method for fusing experimental and computational data was presented.  We have shown how, 
using this method, limited wind tunnel data for a missile can be used to increase the accuracy of databases in 
comprehensive flight simulation programs.  This method allows data structure flexibility and the use of 
heterogeneous data sets, provides a fully analytic, mathematical description that can be easily manipulated and 
shared between applications, and provides a rational basis for propagating uncertainty estimates. 
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SYMPOSIA DISCUSSION – PAPER NO: 23 

Discusser’s Name: Ben Newby 

Question: 
Is the method applicable to more than two data sources, or is it simply applied repeatedly? 

Author’s Name: P H Reisenthal  

Author’s Response:  
The method generalised well to more than two sources.  We have successfully applied the method to multiple 
data streams simultaneously, for example experimental data, numerical data, and analysis (such as a simple 
Mach number dependence). 
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Introduction
• Integration of experimental and computational data

– key to supporting decisions during the development of 
aerospace products

• Heterogeneous data sets
– Mutually enhanced
– Multidimensional response surface technology

• Application:
– Use of sparse experimental data to correct a 

computational database for use in comprehensive flight 
simulations of missiles
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Motivation
• Develop global understanding of the data

• Common situation…

• Data fusion technique via response surface 
methods
– not conventional interpolation / data fitting
– computational (model) based

• Dual aspects:
– interpolation/extrapolation of limited experimental data
– fine-tuning / calibration of computational models
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Mutual Enhancement of Data Sets

• Data generalization
– ill-posed problem
– regularizing assumptions

• physics based models
• mathematical equations
• smoothness assumptions
• empiricism
• Hypersurface (NEAR RS)

– goes through the experimental data
– “supported” by additional computational 

constraints
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• Identify smooth mapping F : RN→R
• Minimize the distance  

• Expand F into radial basis functions

f is a shape function
b is a scale or stiffness parameter

RS support vectors
ck solution of least-squares problem

N-Dimensional Response Surface 
Calculation
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Radial Basis Function Network
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• If  f, b, χk are known ⇒ linear 
system [A][C] = [Y]

• Regressor model for the data: 
[A][C] = [Y] + [e]

• Since 

• Propagate uncertainty:

δYi → δck → δF

Uncertainty Prediction (NEAR RS)
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Application to Data Fusion
• “The combination of a group of inputs with the 

objective of producing a single output of greater 
quality and greater reliability.” (Li et al., 1993) 

• Two sources of data
– computational (approximations in physical models)
– experimental (limitations, cost, sparse) 
– not same sampling, conditions

• Construct global metamodel incorporating all the 
data
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• Introduce auxiliary variable                     added to 
the multidimensional space 

• used to tag whether data are computational 
or experimental

• Single response surface calculated in  N+1 
dimensions, queried in the            subspace

Method
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Experimental Points

"X"

Experimental Points

"X"

Computational Points

Experimental Points

Computational Points

"X"

Geometric Interpretation
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One-Dimensional Example
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One-Dimensional Example
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Fusion Example (Concluded)
• Importance of using computational models which 

incorporate the correct physics
– specially important when performing sparse data 

interpolation/extrapolation

• “Two experimental points” example is relevant to 
the case of multidimensional data
– finite resources (time and budget) limit the number of 

conditions that can be acquired
– modern design-of-experiment techniques can help, but
– “filling in” the space remains an impossibility when the 

number of independent variables is large
– sparse sampling in some directions to be expected
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Correction of Aerodynamic Databases 
Using Experimental Data

• Assimilation of limited wind tunnel data
– goal: increase the accuracy of comprehensive flight 

simulations of a missile

• Generic body-tail configuration
• Two data sets

• sparse experimental (wind tunnel) data
• “computational” database (MISL3)

– Forces and moments
– Wide range of angles of attack, roll angles, and Mach 

numbers

• “Error database”
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• Defined as difference between two fits
• Four-dimensional
• Analytic (smoothly varying)

Error database
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• Used to “correct” MISL3 database
• takes into account experimental measurements

• Smart interpolation/extrapolation
• process is automatic
• no equations specified
• requires only the specification of support vectors

Error database (Cont’d)
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Wind Tunnel Data Enhancement of MISL3 
Database: Side Force Results
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Wind Tunnel Data Enhancement of MISL3 
Database: Rolling Moment
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Conclusions
• Fusion of experimental and computational data 

via dimensionality augmentation and RS methods

• Fully analytic, mathematical description
– easy to use (support vector specification)
– data structure flexibility / use of heterogeneous data 

sets
– rational basis for propagating uncertainty estimates

• Assimilation of limited wind tunnel data with 
computational databases
– construct smart interpolation and extrapolation 

schemes
– fine-tune the results of computational analyses
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Questions?
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